
DICE Part Editor: Evolution of an End-User Visual 

Programming Language 

Daniele Dellagiacoma 

Department of Information Engineering and Computer Science 

University of Trento 

via Sommarive 14, 38123, Trento, Italy 

daniele.dellagiacoma@unitn.it 

 

Abstract 

Nowadays the end-user development (EUD) 

tools are widely used and in constant 

evolution. They aim at helping especially 

non-technical users to create or modify own 

software artifacts without a deep knowledge 

of programming language. In this paper I 

examine the development of the DICE Part 

Editor (DPE), which is a EUD tool used to 

customize the artificial intelligence (AI) of the 

non-player characters (NPCs) through the 

creation of complex behavioral models. I 

analyze the changes that the DPE went 

through from its first evaluation with the end 

users to the current situation. 

 

 

1. INTRODUCTION 

End-user development (EUD) refers to tools, 

activities and methods that allow end-users, 

hereby defined as non-professional software 

developers, to create or modify a software 

artifact without a deep knowledge of 

programming language behind it [1]. 

It is known that programming languages are 

difficult to learn and use [2], and sometimes 

require skills that many people don’t have. 

For this reason one of the goals of EUD is to 

balance the works between professional and 

non-professional programmers. 

In the last years the number of end-user 

programmers has increased more and more, in 

fact nowadays there are more end-user 

programmers than professional programmers 

[3]. Moreover it has even been perceived that 

non-programmers can create quite complex 

programs with a little training [4], depending 

on the tool. In addition nowadays EUD aims 

at assisting professional programmers too, for 

example during the testing phase or to support 

learning. 

An example is the use of graphics as medium 

to show information about the program state, 

which can be more effective than purely 

textual display. In fact, the human visual 

system is certainly optimized for multi-

dimensional data rather than one-dimensional 

text, which does not exploit the full power of 

the brain [5]. 

A visual representation can provide further 

advantages during the development phase, 

such as an easier development thanks to less 

concepts required and a visual feedback that 

show in real time what the users are doing. 

Other advantages can be to decrease the time 

of the development process and to improve 

the precision with which people perform a 

programming task. 

There are two common types of activities that 

are allowed by EUD [6]. The first is 

“parameterization and customization”, which 

allows users to choose from some interaction 

mechanisms already available in the 

application. The other activity is “program 



creation and modification” aims to modify or 

create a new software. 

The DICE Part Editor (DPE), which is part of 

PRESTO project, belongs to the first category 

of activities. 

 

 

2. PRESTO 

PRESTO (Plausible Representation of 

Emergency Situations for Training 

Operations) started in 2013 as a project 

financed by Provincia Autonoma di Trento. 

The project is currently under development by 

Delta Lab [7], the Research and Development 

division of Delta Informatica Spa, a software 

house located in Trento. 

PRESTO aims at developing a serious game 

for emergency training and improve this 

virtual simulation with non-player characters 

(NPCs) that act in autonomy according to the 

needs of the trainer. While the trainee plays 

inside the virtual simulation, using his/her 

skills and knowledge to complete a set of 

specific goals, the trainer supervise and direct 

the training session (Fig. 1). 

Furthermore, PRESTO’s goal is to provide 

EUD tools to the trainer to allow the 

personalization and the management of the 

simulation and the artificial intelligence (AI) 

of NPCs. 

 

 

3. DICE Part Editor 

One of the EUD tools of PRESTO is the 

DICE Part Editor (DPE), which aims at 

creating or modifying the behavioral models 

of the NPCs populating the virtual reality [8]. 

The DPE has been designed for the training 

strategist, a person between programmer and 

trainer. His/her work is to prepare and plan 

scenarios and behavioral models that will be 

used during the training. 

The behavioral model of a 

NPC defines how the 

character will act in 

specific situations. 

The main structure of the 

DPE is represented by a 

grid, where the user can 

drag-and-drop a goal from 

the left toolbox to a 

specific cell. Goals 

represent the smallest and 

simplest action that NPCs 

can carry out during the 

training session. More 

than one goal in a single 

cell means that set of goal 

will be achieved 

simultaneously. 

The DPE is provided with four basic control 

structures – sequence, condition, loop and 

interruption – which can be combined to 

create new elaborated behavioral models (Fig. 

2). The interaction constrains the actions of 

the users: the usability increases dramatically 

with a reduced margin of error though the 

Figure 1: how PRESTO project works. 



expressiveness of the visual language 

decrease. 

Zeno Menestrina [9], who has been a Master 

degree student in Computer Science, has 

started the development of the DPE in 

collaboration with Delta Informatica. In a 

second time I joined the PRESTO project 

starting to work on the DPE for my thesis [10] 

in Academic year 2014/2015. 

The DPE development went through several 

changes during the course of time, which 

have been necessary to follow the evolution 

of PRESTO. Also the target of the DPE has 

been changed, it switched to the trainer from 

the training strategist, who has more skills in 

computer science and is able to create 

behavioral models more complex. 

 

 

4. EVALUATION 

After this first development phase, the DPE 

went through a testing and evaluation phase. 

This phase took place during the course of 

Agent-Oriented Software Engineering 

(AOSE), part of the master in computer 

science at the University of Trento and held 

by professor Paolo Giorgini, which occurred 

during the second semester of the Academic 

year 2014-2015. The participants were chosen 

based on their programming background, 

similar to the one of the training strategists. 

In a first phase, some DeltaLab employers 

provided an overview of the PRESTO project 

and fundamentals of AIs. The overall goal of 

the project was the development of some 

NPCs' behavioral models through the DPE 

and test them inside a virtual simulation 

named DADI. 

The phase of 

collecting feedback 

and advices was 

made during four 

laboratory lessons 

and two focus 

groups. The 

students that took 

part in laboratory 

lessons were 15, 

instead students that 

participated to 

focus groups were 

11. 

This allowed a dynamic re-design of the 

interface and seven updates of the DPE. To 

simplify the error recovery one of the first 

functionalities implemented was 

“Undo/Redo”, it has been suggested from the 

users and allows to come back to previous 

states of the systems and to cancel a specific 

number of changes. Its implementation has 

been necessary to provide more control of the 

system for the user. 

It has been added a color transition to the first 

row/column in case of MouseOver to 

underline the interactivity of the grid 

structure, in fact the user can delete an entire 

column instead one cell by one. A row can’t 

be delete because it would destroy the all 

created structure. 

Adding a pop-up is another relevant update 

that has been done. When the user’s saving 

Figure 2: the DICE Part Editor interface. 



the project, the pop-up displays the 

parameters that the user forgot to specify. 

This feature is useful to prevent some errors 

and to inform users about values that he/she 

didn’t specify. 

There were other comments and advices from 

users that weren’t implemented in the current 

version of the DPE yet but they can represent 

possible future developments. 

Users required more shortcuts (i.e. CTRL + 

C, CTRL + V) and a research function for the 

ontologies to simplify navigation to expert 

users. Other features required by users are the 

ability to drag&drop elements that are already 

present in the grid and a tooltip that 

summarizes the selected values of the 

condition. 

However, during two weeks it has been 

proved the simplicity of interaction with the 

DPE by students of AOSE though it needs a 

deep knowledge of AIs. The addition of more 

and more functionalities allowed more rich 

language even though the usability of the 

DPE decreased and end-users need deeper 

programming and AIs knowledge. 

 

 

5. DESIGN 

Almost every design choice of the DPE 

was based on the literature and on the 

Jakob Nielsen’s heuristics [11], 

furthermore they could be used to fix 

some problems that are still present. 

The addition of a pop-up to notify user 

of what parameters he/she forgot to 

specify, is based on the ninth Nielsen’s 

heuristic which declares that the user 

should be helped to recognize, diagnose 

and recover errors. The function 

“Undo/Redo” is instead based on the 

fifth heuristic which allows the user to 

go back to previous states of the system and 

prevent errors. 

One problem that is still present concerns the 

semantic of the roles and goals in the DPE. 

The problem has been underlined by users 

who don’t understand the difference between 

some goals (i.e. the difference between 

“slept” and “start sleep”). This problem can 

be related to sin “More is more” of the seven 

deadly sins [12]. 

Another sin of the design of the DPE 

underlined by users is its visual structure. 

Users reported problems in seeing the end of 

a loop when many steps are included because 

the loop is displayed only when the mouse 

cursor is over it. Even when there are more 

steps nested, users can’t see the entire 

behavioral model on which they’re working. 

 

 

6. CONCLUSIONS AND FUTURE 

WORKS 

Even though the DPE went through several 

updates and changes during the time, there are 

still some problems that influence negatively 

Figure 3: a mockup of a possible different visual representation of the DPE. 



the entire interaction with the DPE. 

One of the main problem of the DPE is its 

visual structure, the solution of this problem 

is strongly related to the end users because 

it’s not completely clear who will they be and 

the skills that they should have. 

If the end user of the DPE would be a 

professional developer with advanced 

competence in programming and AIs, the 

visual structure of the DPE could be shifted 

from a flow chart to a graph with multiple 

layers (Fig. 3). This structure can provide 

better global view of the project and an easier 

navigation for expert users. 

Other features that can be implemented on the 

DPE, if the end user is a professional 

developer, are the ability to insert comments 

and to see and adjust the XML file while 

using the DPE. 

On the other hand, if the end user of the DPE 

would be a non-technical user (i.e. 

firefighters, polices or hospital staff), the 

visual structure would change completely. It 

should be easier to learn and use though the 

language expressiveness decrease. 

In this paper it has been proposed the 

evolution of the DPE through many changes. 

The DPE is progressing in parallel with 

PRESTO project and as long as its target 

won’t be decided, its development can’t be 

completed. 

 

 

REFERENCES 

[1] “End-user development,” Wikipedia, the free 

encyclopedia. 2015. 

[2] L. Gould and F. William, “Programming by 

Rehearsal.” Xerox Palo Alto Research Center 

Research Report, Palo Alto, 1984. 

[3] C. Scaffidi, M. Shaw, and B. Myers, “Estimating 

the Numbers of End Users and End User 

Programmers,” in Proceedings of the 2005 IEEE 

Symposium on Visual Languages and Human-

Centric Computing, Washington, DC, USA, 2005, 

pp. 207–214. 

[4] D. C. Halbert, “Programming by Example,” PhD 

Thesis, Department of Electrical Engineering and 

Computer Sciences, University of California, 

Berkeley, 1984. 

[5] B. A. Myers, “Visual programming, programming 

by example, and program visualization: A 

taxonomy,” ACM SIGCHI Bull., vol. 17, no. 4, pp. 

59–66, 1986. 

[6] H. Lieberman, F. Paternò, M. Klann, and V. Wulf, 

“End-User Development: An Emerging 

Paradigm,” in End User Development, H. 

Lieberman, F. Paternò, and V. Wulf, Eds. Springer 

Netherlands, 2006, pp. 1–8. 

[7] “Deltalab - Divisione ricerca e sviluppo Delta 

Informatica.” http://lab.deltainformatica.eu/. 

[8] Z. Menestrina, A. De Angeli, and P. Busetta, 

“APE: End User Development for Emergency 

Management Training,” in 2014 6th International 

Conference on Games and Virtual Worlds for 

Serious Applications (VS-GAMES), 2014, pp. 1–4. 

[9] Z. Menestrina, “BMCT: a UI for high level 

orchestration of serious games,” MSc Thesis, 

Department of Information Engineering and 

Computer Science, University of Trento, Italy, 

2013. 

[10] D. Dellagiacoma, “Re-design e valutazione di 

un’interfaccia di end-user development per serious 

games,” Thesis, Department of Information 

Engineering and Computer Science, University of 

Trento, Italy, 2015. 

[11] J. Nielsen and R. Molich, “Heuristic Evaluation of 

User Interfaces,” in Proceedings of the SIGCHI 

Conference on Human Factors in Computing 

Systems, New York, NY, USA, 1990, pp. 249–

256. 

[12] L. McIver and D. Conway, “Seven Deadly Sins of 

Introductory Programming Language Design,” in 

Proceedings of the 1996 International Conference 

on Software Engineering: Education and Practice 

(SE:EP ’96), Washington, DC, USA, 1996, pp. 

309–316. 


